Mission 8 - Navigation (Objectives 1-6)	
What values does the code return? enc.read(side)	 a) True or False b) 0 or 1 c) An integer between 0 and 4095 d) An integer between 0 and 100
What is the value of enc_count after a full 360 degree rotation?	a) enc_count = 20 b) enc_count = 360 c) enc_count = 30 d) enc_count = 40
How many slots are on the CodeBot's encoder disc?	a) 20 b) 40 c) 2 d) 360
How do you make a list of counters for the LEFT and RIGHT wheels?	a) enc_count = [0, 0] b) enc_count = (0, 0) c) enc_count = [LEFT, RIGHT] d) enc_count = 0
What does the following line of code do? enc_count[0] = enc_count[0] + 1	a) Causes an error b) Increments the right wheel c) Increments the left wheel d) Increments both wheels
What is the final value of count? count = 1 enc_state = True slot = False if enc_state != slot: count = count + 1	a) 1 b) 2 c) True d) False
Given this code, what happens when the wheels turn backward slot = sense_slot(side) if enc_state[side] != slot: enc_state[side] = slot enc_count[side] = enc_count[side] + 1	a) enc_count stays the sameb) enc_count increasesc) enc_count decreasesd) The 'bot will stop
What is the best way to use pi in code?	 a) Use the number 3.14 in the calculation b) Define a constant PI = 3.14 and use PI in the calculation c) Use the fraction 22/7 in the calculation d) Use math.pi from the math library in the calculation
What is the calculation for moving the 'bot a specific distance?	 a) Distance = counts * wheel circum / 40 b) Distance = counts * 40 / wheel circum c) Distance = wheel circum * 40 / counts d) Distance = (counts + wheel circum) / 40

When using the encoders to travel, when will the drive loop break?	 a) When either wheel equals count b) When either wheel is greater than or equals count c) When either wheel count is 0 d) When you press BTN-0
Mission 8 - Navigation (C	Objectives 7-14)
How do you make a copy of a list?	 a) new_list = old_list b) new_list = [] c) new_list = old_list.copy() d) new_list.copy(old_list)
What does this code do? while True: while True: if buttons.was_pressed(1): break	a) Waits for a button press to go again.b) Ends the code.c) Remote control for the 'bot.d) Recalculates the distance.
How can you debounce the button?	a) Hold the button for one second.b) Add a sleep() delay.c) Add another while loop to the code.d) Call buttons.was_pressed()
What code captures the current time-tick count in milliseconds?	a) ticks() b) ticks_ms() c) time() d) t_start
What function finds the elapsed time?	 a) t_stop - t_start b) elapsed(t_stop, t_start) c) ticks_diff(t_stop, t_start) d) time(t_stop, t_start)
What measurement are you using to calculate the 'bot's speed?	a) Counts per second b) Centimeters per second c) Centimeters per millisecond d) Counts per millisecond
What concept is used to continuously adjust a system to keep the error close to zero?	 a) Design iteration b) Process control system c) Closed loop control d) Feedback loop
What happens if you don't use this code in your function? def drive(cm, speed): global power, direction	 a) Your code will crash b) Nothing happens; it isn't necessary c) It will make a local variable into a global d) It will make a global variable into a local
What does this code do?	 a) If the angle is negative, turn the 'bot clockwise b) If the angle is negative, turn the 'bot counterclockwise c) If the angle is negative, go backwards d) Causes an error

```
if angle < 0:
    dir = [-1, +1]
else:
    dir = [+1, -1]

To make your code
more readable, what
section should go right
after imports?</pre>
a) Functions
b) Constants
c) Global variables
d) The main program
```

Mission 9 - All Systems Go! Obj 1-7		
How many volts are provided with 4 fresh AA alkaline batteries in series?	a) 1.5 volts b) 3.0 volts c) 6.0 volts d) 12.0 volts	
What code returns the power supply voltage?	a) system.pwr_volts()b) leds.pwr()c) system.pwr_is_usb()d) system.pwr_is_batt()	
What code returns the power supply being used?	a) system.pwr_volts()b) leds.pwr()c) system.pwr_is_usb()d) system.pwr_is_batt()	
The chart of battery usages resembles a:	 a) Straight vertical line b) Straight horizontal line c) Parabola d) Straight slanted line 	
What calculation is used to find the battery percentage?	 a) Percent = length * width / 2 b) Percent = sum / count c) Percent = (volts / 2) - 2 d) Percent = volts / 100 	
Which of the following DOES NOT influence the CPU's temperature:	 a) The outside temperature b) Shaking the CodeBot c) The level of activity in the processor d) The amount of covering for the sensor 	
What code will add a new value to a list?	a) my_list.append(new_value)b) my_list.add[new_value]c) append.new_list(new_value)d) add.new_list[new_value]	
What code will empty a list?	 a) my_list.empty() b) my_list.clear() c) my_list.append() d) clear(my_list) 	

What does this code do? a) Returns the sum of the list b) Returns the highest number in the list count = len(nlist) c) Returns the lowest number in the list sum = 0d) Returns the average of the list i = 0while i < count: sum = sum + nlist[i] i = i + 1return sum / count What happens if the a) The 8 user LEDs turn on, simulating a heater b) The 5 line sensor LEDs turn on, simulating a fan temperature is too low: if t > BASELINE + DEADBAND: c) Both sets of LEDS turn on, heating and cooling leds.user(0b11111111) d) Nothing will happen elif t < BASELINE - DEADBAND:</pre> leds.ls(0b11111) Mission 9 - All Systems Go! Obj 8-12 What values are returned a) A tuple of three integers, ranging from 0-100 by accel.read() b) A tuple of three floats, ranging from -99.0 to +100.0 c) A tuple of three integers, ranging from -32767 to +32768 d) A tuple of two Booleans, True or False What does this code do? a) Clears the accelerometer b) Prints the accelerometer reading to the console accel.dump axes() c) Adds a reading value to the list d) Causes an error because it needs a parameter If the robot is flat and a) (0.0, 0.0, -1.0) motionless, what will b) (0, 0, -1) accel.read() return? c) (0, 16383, -1) d) (0, 0, -16383) Which axis does vals[2] a) X-axis refer to? b) Y-axis c) Z-axis vals = accel.read() d) The tuple vals print(vals[2]) a) 10 What is the value of x? b) 20 x, y, z = (10, 20, 30)c) 30 d) (10, 20, 30) Approximately what value a) -16383 would the y-axis have if you b) +16384 c) 0 pointed CodeBot toward the sky? d) -1 a) 50 If the x-axis is zero and the 'bot is facing straight up, b) 0 what would the speed c) +SPEED "rot_spd" be assigned? d) -SPEED

The value of the expression can be: abs (dx)	 a) Positive or negative b) Positive only c) True or False only d) Any integer or float
Given the code, what is TRUE about "before"? now = accel.read() before = now	 a) It references the same list as "now" b) It is a tuple with the same values as "now" c) It overwrites the values in "now" d) It reads a new value from the accelerometer
What does this code do? dx = now[0] - before[0]	 a) Compares the second value to the first value b) Finds the average of the two numbers c) Compares the difference to a sensitivity threshold d) Calculates the difference between the first and second reading

	y Review/Test (Missions 8-9: "The computer science definition of") s introduced in the missions, use the ones you want–same terms for review/ test)
Wheel encoders	 a) A tiny chip that measures the force of acceleration in three directions b) A disc with slots that rotates with a wheel so IR light can pass through them c) IR sensors that can detect nearby objects by reflected light d) A tiny chip with silicon structures inside that really move
accelerometer	 a) A tiny chip that measures the force of acceleration in three directions b) A disc with slots that rotates with a wheel so IR light can pass through them c) IR sensors that can detect nearby objects by reflected light d) A tiny chip with silicon structures inside that really move
MEMS	 a) A tiny chip that measures the force of acceleration in three directions b) A disc with slots that rotates with a wheel so IR light can pass through them c) IR sensors that can detect nearby objects by reflected light d) A tiny chip with silicon structures inside that really move
Iterative process	 a) Repeatedly taking small steps to build a whole solution b) Continuously adjusting the system to keep the error close to zero c) Automates control of a system by comparing the output state to input d) A marker placed on a line of code that causes the debugger to stop
Closed loop control	 a) Repeatedly taking small steps to build a whole solution b) Continuously adjusting the system to keep the error close to zero c) Automates control of a system by comparing the output state to input d) A marker placed on a line of code that causes the debugger to stop
Feedback loop	 a) Repeatedly taking small steps to build a whole solution b) Continuously adjusting the system to keep the error close to zero c) Automates control of a system by comparing the output state to input d) A marker placed on a line of code that causes the debugger to stop
breakpoint	a) Repeatedly taking small steps to build a whole solutionb) Continuously adjusting the system to keep the error close to zero

	 c) Automates control of a system by comparing the output state to input d) A marker placed on a line of code that causes the debugger to stop
state	 a) An input or output device used for communication by CodeBot b) The part of a computer the user interacts with c) Distance divided by time; the rate d) A property of an object at a given point during code execution
speed	 a) An input or output device used for communication by CodeBot b) The part of a computer the user interacts with c) Distance divided by time; the rate d) A property of an object at a given point during code execution
User interface	 a) An input or output device used for communication by CodeBot b) The part of a computer the user interacts with c) Distance divided by time; the rate d) A property of an object at a given point during code execution
Under load	 a) Surroundings b) The range of input values where the output doesn't change c) Original data used as a starting point for comparison d) Batteries being used to power a peripheral
ambient	 a) Surroundings b) The range of input values where the output doesn't change c) Original data used as a starting point for comparison d) Batteries being used to power a peripheral
Baseline data	 a) Surroundings b) The range of input values where the output doesn't change c) Original data used as a starting point for comparison d) Batteries being used to power a peripheral
deadband	 a) Surroundings b) The range of input values where the output doesn't change c) Original data used as a starting point for comparison d) Batteries being used to power a peripheral

Unit 4 Concepts and Coding Kahoot Review (Missions 8, 9) / (questions from 4 review kahoots)		
What is the value of enc_count after a full 360 degree rotation?	 a) enc_count = 20 b) enc_count = 360 c) enc_count = 30 d) enc_count = 40 	
How do you make a list of counters for the LEFT and RIGHT wheels?	 a) enc_count = [0, 0] b) enc_count = (0, 0) c) enc_count = [LEFT, RIGHT] d) enc_count = 0 	
What does the following line of code do?	a) Causes an error b) Increments the right wheel	

enc_count[0] = enc_count[0] + 1	c) Increments the left wheel d) Increments both wheels
What is the final value of count? count = 1 enc_state = True slot = False if enc_state != slot: count = count + 1	a) 1 b) 2 c) True d) False
What is the best way to use pi in code?	 a) Use the number 3.14 in the calculation b) Define a constant PI = 3.14 and use PI in the calculation c) Use the fraction 22/7 in the calculation d) Use math.pi from the math library in the calculation
How do you make a copy of a list?	 a) new_list = old_list b) new_list = [] c) new_list = old_list.copy() d) new_list.copy(old_list)
What does this code do? while True: while True: if buttons.was_pressed(1): break	a) Waits for a button press to go again.b) Ends the code.c) Remote control for the 'bot.d) Recalculates the distance.
How can you debounce the button?	a) Hold the button for one second.b) Add a sleep() delay.c) Add another while loop to the code.d) Call buttons.was_pressed()
What code captures the current time-tick count in milliseconds?	a) ticks() b) ticks_ms() c) time() d) t_start
What function finds the elapsed time?	 a) t_stop - t_start b) elapsed(t_stop, t_start) c) ticks_diff(t_stop, t_start) d) time(t_stop, t_start)
To make your code more readable, what section should go right after imports?	a) Functionsb) Constantsc) Global variablesd) The main program
How many volts are provided with 4 fresh AA alkaline batteries in series?	a) 1.5 volts b) 3.0 volts c) 6.0 volts d) 12.0 volts
What code returns the power supply voltage?	a) system.pwr_volts() b) leds.pwr() c) system.pwr_is_usb()

	d) system.pwr_is_batt()
What code returns the power supply being used?	a) system.pwr_volts()b) leds.pwr()c) system.pwr_is_usb()d) system.pwr_is_batt()
What code will add a new value to a list?	a) my_list.append(new_value)b) my_list.add[new_value]c) append.new_list(new_value)d) add.new_list[new_value]
What code will empty a list?	a) my_list.empty() b) my_list.clear() c) my_list.append() d) clear(my_list)
<pre>What does this code do? count = len(nlist) sum = 0 i = 0 while i < count: sum = sum + nlist[i] i = i + 1 return sum / count</pre>	 a) Returns the sum of the list b) Returns the highest number in the list c) Returns the lowest number in the list d) Returns the average of the list
What happens if the temperature is too low: if t > BASELINE + DEADBAND: leds.user(0b11111111) elif t < BASELINE - DEADBAND: leds.ls(0b11111)	 a) The 8 user LEDs turn on, simulating a heater b) The 5 line sensor LEDs turn on, simulating a fan c) Both sets of LEDS turn on, heating and cooling d) Nothing will happen
What values are returned by accel.read()	 a) A tuple of three integers, ranging from 0-100 b) A tuple of three floats, ranging from -99.0 to +100.0 c) A tuple of three integers, ranging from -32767 to +32768 d) A tuple of two Booleans, True or False
If the robot is flat and motionless, what will accel.read() return?	a) (0.0, 0.0, -1.0) b) (0, 0, -1) c) (0, 16383, -1) d) (0, 0, -16383)
<pre>Which axis does vals[2] refer to? vals = accel.read() print(vals[2])</pre>	 a) X-axis b) Y-axis c) Z-axis d) The tuple vals
What is the value of x? x, y, $z = (10, 20, 30)$	a) 10 b) 20 c) 30 d) (10, 20, 30)

Approximately what value would the y-axis have if you pointed CodeBot toward the sky?	a) -16383 b) +16384 c) 0 d) -1
Given the code, what is TRUE about "before"? now = accel.read() before = now	 a) It references the same list as "now" b) It is a tuple with the same values as "now" c) It overwrites the values in "now" d) It reads a new value from the accelerometer
What does this code do? dx = now[0] - before[0]	 a) Compares the second value to the first value b) Finds the average of the two numbers c) Compares the difference to a sensitivity threshold d) Calculates the difference between the first and second reading

Unit 4 Concepts and Coding	Unit 4 Concepts and Coding Kahoot Test (Missions 8, 9) / (questions from 4 review kahoots)		
What is the value of one wheel encoder after a full 360 degree rotation?	a) enc_count = 20 b) enc_count = 30 c) enc_count = 40 d) enc_count = 360		
How do you make a new list for the LEFT and RIGHT power?	 a) power = 0 b) power = [LEFT, RIGHT] c) power = [0, 0] d) power = (0, 0) 		
What does the following line of code do? enc_count[1] = enc_count[1] + 1	 a) Increments the RIGHT wheel counter b) Increments the LEFT wheel counter c) Increments both wheel counters d) Compares the right and left wheel counters 		
What is the final value of "count"? count = 1 enc_state = True slot = True if enc_state != slot: count = count + 1	a) 1 b) 2 c) True d) False		
What is the best way to use $\ensuremath{\pi}$ in code?	 a) Use the fraction 22/7 b) Use the number 3.14 c) Use math.pi from the math library d) Define a constant PI = 3.14 		
How do you make a copy of a list?	a) New_list = []b) new_list = old_listc) new_list.copy(old_list)d) new_list = old_list.copy()		

What does this code do? while True: while True: if buttons.was_pressed(1): break What code will debounce a	a) Ends the code b) Recalculates the distance c) Waits for a button press to go again d) Remote control for the CodeBot a) buttons.was_pressed()
button?	b) if buttons.was_pressed() == True c) x = buttons.was_pressed() d) sleep(delay)
What code captures the current time-tick count in milliseconds?	a) time() b) ticks() c) ticks_ms() d) t_start
What function finds the elapsed time?	a) time(t_stop, t_start)b) t_stop - t_startc) ticks(t_stop, t_start)d) ticks_diff(t_stop, t_start)
To make your code more readable, what section should go right after constants?	a) Functionsb) Importsc) Global variablesd) Main program
How many volts are provided with 4 fresh AA batteries in series?	a) 12.0 volts b) 6.0 volts c) 3.0 volts d) 2.0 volts
What code returns the power supply voltage?	a) leds.pwr()b) system.pwr_is_usb()c) system.pwr_is_batt()d) system.pwr_volts()
What code returns the power supply being used?	a) leds.pwr() b) system.pwr_is_usb() c) system.pwr_is_batt() d) system.pwr_volts()
What code will add a new value to a list?	 a) my_list.add[new_value] b) my_list.append(new_value) c) append.my_list(new_value) d) add.my_list(new_value)
What code will empty a list?	a) my_list.empty() b) my_list.append() c) my_list.clear() d) clear(my_list)
What does this code do?	 a) Returns the highest value in a list b) Returns the lowest value in a list c) Returns the average of the list d) Returns the sum of the list

<pre>count = len(nlist) sum = 0 i = 0 while i < count: sum = sum + nlist[i] i = i + 1 return sum / count</pre>	
What happens if the temperature is too high? if t > BASELINE + DEADBAND: leds.user(0b11111111) elif t < BASELINE - DEADBAND: leds.ls(0b11111)	 a) The 8 user LEDs turn on, simulating a heater b) The 5 line sensor LEDs turn on, simulating a fan c) Both sets of LEDs turn on, heating and cooling d) Nothing happens
What happens if the temperature is in an acceptable range? if t > BASELINE + DEADBAND: leds.user(0b11111111) elif t < BASELINE - DEADBAND: leds.ls(0b11111)	 a) The 8 user LEDs turn on, simulating a heater b) The 5 line sensor LEDs turn on, simulating a fan c) Both sets of LEDs turn on, heating and cooling d) Nothing happens
What values are returned by "accel.read()"?	 a) A tuple of two Booleans, True or False b) A tuple of three integers, ranging from -32767 to 32768 c) A tuple of three integers, ranging from 0-100 d) A tuple of three floats, ranging from -99.0 to 100.0
<pre>Which axis does vals[0] refer to? vals = accel.read() print(vals[0])</pre>	a) x-axis b) y-axis c) z-axis d) The tuple "vals"
What is the value of "y"? x, y, z = (30, 50, 40)	a) 30 b) 50 c) 40 d) (30, 50, 40)
If the robot is flat and motionless, what will "accel.read()" return?	a) (0.0, 0.0, -1.0) b) (0.0, 0.0, -32767.0) c) (0, 0, -16383) d) (-16383, 0, 0)
Given the code, what is TRUE about "before"? now = accel.read() before = now	a) It overwrites the values in "now"b) It references the same list as "now"c) It reads a new value from the accelerometerd) It is a tuple with the same values as "now"
What does this code do? dx = now[0] - before[0]	 a) Finds the average of the two numbers b) Finds the difference between the first and last reading c) Compares the difference to a sensitivity threshold d) Compares the "now" value to the "before" value